翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Brackett series : ウィキペディア英語版
Hydrogen spectral series

The emission spectrum of atomic hydrogen is divided into a number of spectral series, with wavelengths given by the Rydberg formula. These observed spectral lines are due to the electron making transitions between two energy levels in the atom. The classification of the series by the Rydberg formula was important in the development of quantum mechanics. The spectral series are important in astronomical spectroscopy for detecting the presence of hydrogen and calculating red shifts.
==Physics==

A hydrogen atom consists of an electron orbiting its nucleus. The electromagnetic force between the electron and the nuclear proton leads to a set of quantum states for the electron, each with its own energy. These states were visualized by the Bohr model of the hydrogen atom as being distinct orbits around the nucleus. Each energy state, or orbit, is designated by an integer, as shown in the figure.
Spectral emission occurs when an electron transitions, or jumps, from a higher energy state to a lower energy state. To distinguish the two states, the lower energy state is commonly designated as , and the higher energy state is designated as . The energy of an emitted photon corresponds to the energy difference between the two states. Because the energy of each state is fixed, the energy difference between them is fixed, and the transition will always produce a photon with the same energy.
The spectral lines are grouped into series according to . Lines are named sequentially starting from the longest wavelength/lowest frequency of the series, using Greek letters within each series. For example, the line is called "Lyman-alpha" (Ly-α), while the line is called "Paschen-delta" (Pa-δ).
There are emission lines from hydrogen that fall outside of these series, such as the 21 cm line. These emission lines correspond to much rarer atomic events such as hyperfine transitions. The fine structure also results in single spectral lines appearing as two or more closely grouped thinner lines, due to relativistic corrections.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hydrogen spectral series」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.